
FusionReactor Webinar:
Troubleshooting JVM Memory Problems

with FusionReactor

Introductions

Charlie Arehart

Independent Consultant, CArehart.org

(Focused on server troubleshooting)

Agenda

▪ Foreword

▪ Some common misconceptions about memory/memory problems

▪ Key components related to memory for java servers

▪ What if JVM memory spaces fill?

▪ How FusionReactor can help prove, disprove, or diagnose a memory problem

▪ If heap use IS high, what may be the cause?

▪ What if FR can’t help explain high heap?

▪ How FusionReactor will help with heap problems even more in the future

Foreword

▪ Audience: presumed to already be using FR

▪ But perhaps not using it to its fullest extent, especially regarding memory issues

▪ Concepts apply generally to any Java/CFML server that FR can monitor

▪ Preso is being recorded, so you will be able to revisit details

Some common misconceptions about memory

▪ Why “memory” problems aren’t always what they seem

▪ Is a seeming memory problem really a cause or an effect?

▪ Why a memory problem is typically NOT a “memory leak”

▪ Why mem problems may have nothing to do with JVM tuning or GC algorithms

▪ Why common tips and tools (and myths) often fail to help

JVM

OS Process
(CF, Tomcat, etc.) OS Process

(web server, etc.) OS Process
(others)

Box/OS

Key components related to memory for Java servers

▪ When looking at a “memory problem”, we need to determine/consider where the
problem really is/may be

▪ One can be misled based on where/how they look…

OS tools watch these

FR watches
this

And tracks
historically

Do not
track
historically

Memory within the JVM (not in-geek-depth)

▪ Heap: what it is, how it’s used:

▪ How long remain in the heap, even when no longer in use

▪ What is garbage collection, minor and major

▪ No need to babysit forcing GCs; why is the button there?

▪ How heap is divided into generations:

▪ Depends on GC algorithm. Traditionally eden space, survivor space, old gen

▪ Non-heap JVM memory areas:

▪ Metaspace/permgen

▪ Codecache

▪ Compressed class files

▪ Thread space

▪ Xss (does not set max thread space but rather space per thread)

What if JVM memory spaces fill?

▪ Limits are set in the JVM via arguments, for max/min respectively (defaults vary)

▪ Xmx/xms (these set the heap size)

▪ XX:Maxmetaspacesize/metaspacesize (Java 8)

▪ XX:Maxpermgen/permgen (Java 7 and earlier)

▪ XX:ReservedCodeCacheSize/InitialCodeCacheSize

▪ XX:CompressedClassSpaceSize

▪ Errors which can happen: some passing by and some crashing the JVM

▪ Where to find them: console logs, jvm logs

How FusionReactor can help prove, disprove, or
diagnose a memory problem

▪ How FR quickly, easily shows heap use (use, allocated, max)

▪ How to drill in on heap use over time (since instance startup)

▪ How FR monitors all JVM memory spaces (and over time)

▪ How FR monitors garbage collections (number, duration, over time)

▪ How and when you might force a GC

▪ How FR logs all these over time (30 days by default), mem spaces and GCs

▪ Ways FR can be misinterpreted to suggest a memory problem

If heap use IS high, what may be the cause?

▪ COULD be about some one or a few long-running requests using lots of memory, sure

▪ But usually it’s about some objects that are living far longer than expected (not a “leak”)

▪ In the case of CFML (and to similar degree in java web apps), common causes:

▪ Sessions (they live beyond life of request, until timeout), may be high in number (see FR)

▪ Shared variable scopes (application, server), which live generally until restart (why not see FR)

▪ Query caching (CF Admin setting, App setting, and controlled by coding. See FR)

▪ Template caching (CF Admin setting. See FR)

▪ ehcache caching of pages, objects, etc. (since CF9)

▪ ORM caching

▪ VFS (virtual file system, since CF9)

▪ Change in CF10: above objects are cached per-app vs across all apps

▪ Impact of CF Enterprise Server Monitor, if “memory tracking” enabled

▪ So what about true "leaks“, caused by bugs, etc.? …

What if FR can’t help explain high heap?

▪ Some problems, especially true “leaks”, can be hard to identify with FR alone

▪ In this case, the next step is heap analysis

▪ In my experience, this is a last resort, especially for CFML developers

▪ Often hard to connect the dots to the CFML creating the object, but not impossible

▪ Of course, for pure java developers, heap analysis can be far more useful

▪ Many tools (free and commercial) can provide this analysis

▪ VisualVM included with JDK is adequate. Others include Eclipse MAT, YourKit, JProfiler

▪ Involves taking a heap dump (may be gigs in size but usually pretty quick)
▪ Tracks details of every object in memory (and connections among them)

▪ Can be done manually or via jvm arg creating it on outofmemory condition

▪ Next step is to analyze heap by such characteristics as:
▪ Largest classes by size or count/percentage

▪ Filtering by name

▪ Finding GC roots

▪ Beyond the scope of this webinar topic to elaborate

But FusionReactor will help with this in the future

▪ Next release, FR 7 (due later this year), WILL include heap profiling tool

▪ No need to install JDK tools

▪ No need to worry about whether JVM/app was started as service, or by what user

▪ No need to configure RMI or open ports, etc.

▪ Will be provided as interface feature within FR web UI

▪ Just like FR6 Ultimate added step debugging without any IDE

▪ Will enable viewing, analysis of heap dump, similar to traditional JVM tools

▪ Including counts, sizes, filtering on class names, finding GC roots, etc

▪ We’re planning a webinar on this after it becomes available

▪ Like debugger, memory profiling will be an FR Ultimate feature

▪ So many great features now to justify considering that:
▪ Memory profiler

▪ Request profiler

▪ Step debugger

▪ And more

What about JVM tuning? GC algorithm choices?

▪ Finally, you may notice I have not talked about JVM tuning

▪ The args to control ratios among heap generations, etc.

▪ Features to disable explicit GC

▪ Choosing different GC algorithms

▪ In my experience (10 years of troubleshooting), these are not the solution

▪ They generally arise from people in a panic, googling for any possible answer

▪ Often resources found are from people without good tools to diagnose issues

▪ And they recommend these jvm tweaks, like darts thrown at balloons

▪ I’m not saying you never need to tweak such args or change GC algo

▪ Just saying it’s not ever been the solution to GC problems I’ve found

▪ The approaches discussed here have worked, nearly always

Perhaps simplest solution

▪ Consider increasing your heap size!

▪ Your box may have gigs of available memory, while your app server remains constrained

▪ You may be suffering outofmemory errors needlessly

▪ Sure, it may be that you’ll just “delay the inevitable”, need to raise again and again

▪ But very often there could be a heap size where your app runs comfortably for days/weeks

▪ Beware also that you may THINK the heap is set to more than it really is

▪ Recall how FR can SHOW you what the heap max is, in its UI

▪ Make sure it’s showing to be (near) the amount you expect

▪ Finally, note that sometimes one REGION of the heap may fill, unexpectedly

▪ There are JVM args to help tweak that

▪ But again sometimes the right solution is find the CAUSE for them filling, rather than tweak

Conclusion

▪ Memory problems are not often what they seem

▪ What may seem a memory “leak” may just be long-lived objects

▪ Most memory problems are an effect: challenge is to find the root cause

▪ Solving most memory problems is not about JVM tuning or GC algo choices

▪ Instead the challenge is to find the memory space in trouble

▪ Then find what’s causing that to fill

▪ Maybe consider raising it

▪ FusionReactor provides several tools, in UI and logs, to help

▪ Tracks heap use, and spaces within heap

▪ And memory spaces outside of heap

▪ And garbage collection

▪ And next release will include heap profiling tool, adding another vital tool

Other upcoming webinars

▪ More on analyzing FR logs with Excel – TBA

▪ Troubleshooting and Identifying Issues using FusionReactor 6 - Part 2 – TBA

▪ Registration: www.fusion-reactor.com/webinars

▪ Recordings of past webinars also offered there

Other FR resources

▪ FR web site: fusion-reactor.com

▪ Downloads

▪ Docs, videos, technotes, forums, and much more

▪ Email: sales@fusion-reactor.com, support@fusion-reactor.com

▪ Phone: (978) 496-9990 (sales)

▪ Consulting assistance: cfconsultant.com

▪ We welcome your feedback on these or the other webinars, or any you

would like to see

Questions & Answers

	Slide 1
	Slide 2: Introductions
	Slide 3: Agenda
	Slide 4: Foreword
	Slide 5: Some common misconceptions about memory
	Slide 6: Key components related to memory for Java servers
	Slide 7: Memory within the JVM (not in-geek-depth)
	Slide 8: What if JVM memory spaces fill?
	Slide 9: How FusionReactor can help prove, disprove, or diagnose a memory problem
	Slide 10: If heap use IS high, what may be the cause?
	Slide 11: What if FR can’t help explain high heap?
	Slide 12: But FusionReactor will help with this in the future
	Slide 13: What about JVM tuning? GC algorithm choices?
	Slide 14: Perhaps simplest solution
	Slide 15: Conclusion
	Slide 16: Other upcoming webinars
	Slide 17: Other FR resources
	Slide 18: Questions & Answers

