Troublgshootln%JVM Memory.F
wit usmﬁR




Charlie Arehart

Independent Consultant, CArehart.org

(Focused on server troubleshooting)




Agenda

Foreword

= Some common misconceptions about memory/memory problems

= Key components related to memory for java servers

= What if JVM memory spaces fill?

= How FusionReactor can help prove, disprove, or diagnose a memory problem
= |f heap use IS high, what may be the cause?

= What if FR can’t help explain high heap?

= How FusionReactor will help with heap problems even more in the future




Foreword

= Audience: presumed to already be using FR

= But perhaps not using it to its fullest extent, especially regarding memory issues

= Concepts apply generally to any Java/CFML server that FR can monitor

= Preso is being recorded, so you will be able to revisit details




Some common misconceptions about memory

Why "memory” problems aren’t always what they seem

= |saseeming memory problem really a cause or an effect?

Why a memory problem is typically NOT a "memory leak”

Why mem problems may have nothing to do with JVM tuning or GC algorithms

Why common tips and tools (and myths) often fail to help




Key components related to memory for Java servers

= When looking at a "memory problem”, we need to determine/consider where the
problem really is/may be

= One can be misled based on where/how they look...

OS tools watch these

Do not
track

FR watches OS Process = " 7 mmtmommaT ooy historically
this (CF, Tomcat, etc.) OS5 Process oo
(web server, etc.) OS Process

And tracks JVM (others)
historically




Memory within the JVM (not in-geek-depth)

= Heap: what itis, how it's used:
= How long remain in the heap, even when no longer in use
= What is garbage collection, minor and major
= No need to babysit forcing GCs; why is the button there?
= How heapis divided into generations:

= Depends on GC algorithm. Traditionally eden space, survivor space, old gen

= Non-heap JVM memory areas:
» Metaspace/permgen
= Codecache

= Compressed class files

= Thread space

= Xss (does not set max thread space but rather space per thread)




What if JVM memory spaces fill?

= Limits are set in the JVM via arguments, for max/min respectively (defaults vary)
= Xmx/xms (these set the heap size)
= XX:Maxmetaspacesize/metaspacesize (Java 8)
= XX:Maxpermgen/permgen (Java 7 and earlier)
» XX:ReservedCodeCacheSize/InitialCodeCacheSize

= XX:CompressedClassSpaceSize

= Errors which can happen: some passing by and some crashing the JVM

= Where to find them: console logs, jvm logs




How FusionReactor can help prove, disprove, or
diagnose a memory problem

= How FR quickly, easily shows heap use (use, allocated, max)

= How to drill in on heap use over time (since instance startup)

= How FR monitors all JIVM memory spaces (and over time)

= How FR monitors garbage collections (number, duration, over time)
= How and when you might force a GC

= How FR logs all these over time (30 days by default), mem spaces and GCs

= Ways FR can be misinterpreted to suggest a memory problem




If heap use IS high, what may be the cause?

= COULD be about some one or a few long-running requests using lots of memory, sure

= But usually it's about some objects that are living far longer than expected (not a “leak”)

= Inthe case of CFML (and to similar degree in java web apps), common causes:

Sessions (they live beyond life of request, until timeout), may be high in number (see FR)
Shared variable scopes (application, server), which live generally until restart (why not see FR)
Query caching (CF Admin setting, App setting, and controlled by coding. See FR)

Template caching (CF Admin setting. See FR)

ehcache caching of pages, objects, etc. (since CFg)

ORM caching

VFS (virtual file system, since CFg)

Change in CF10: above objects are cached per-app vs across all apps

Impact of CF Enterprise Server Monitor, if *"memory tracking” enabled




What if FR can’t help explain high heap?

= Some problems, especially true “leaks”, can be hard to identify with FR alone

= In this case, the next step is heap analysis
= In my experience, this is a last resort, especially for CFML developers
= Often hard to connect the dots to the CFML creating the object, but not impossible
= Of course, for pure java developers, heap analysis can be far more useful

= Many tools (free and commercial) can provide this analysis
= VisualVM included with JDK is adequate. Others include Eclipse MAT, YourKit, JProfiler
= Involves taking a heap dump (may be gigs in size but usually pretty quick)
= Tracks details of every object in memory (and connections among them)
= Can be done manually or via jvm arg creating it on outofmemory condition
= Next stepis to analyze heap by such characteristics as:
Largest classes by size or count/percentage
Filtering by name
= Finding GC roots

= Beyond the scope of this webinar topic to elaborate



But FusionReactor will help with this in the future

Next release, FR 7 (due later this year), WILL include heap profiling tool
= No need to install JDK tools
= No need to worry about whether JVM/app was started as service, or by what user
= No need to configure RMI or open ports, etc.

Will be provided as interface feature within FR web Ul
= Just like FR6 Ultimate added step debugging without any IDE

Will enable viewing, analysis of heap dump, similar to traditional JVM tools
= Including counts, sizes, filtering on class names, finding GC roots, etc

We're planning a webinar on this after it becomes available

Like debugger, memory profiling will be an FR Ultimate feature
= So many great features now to justify considering that:
= Memory profiler
= Request profiler
= Step debugger
= And more



What about JVM tuning? GC algorithm choices?

= Finally, you may notice | have not talked about JVM tuning
= The args to control ratios among heap generations, etc.
= Featuresto disable explicit GC
= Choosing different GC algorithms

= In my experience (10 years of troubleshooting), these are not the solution
= They generally arise from people in a panic, googling for any possible answer
= Often resources found are from people without good tools to diagnose issues

= And they recommend these jvm tweaks, like darts thrown at balloons

= I'm not saying you never need to tweak such args or change GC algo

= Just saying it's not ever been the solution to GC problems I've found

= The approachesdiscussed here have worked, nearly always




Perhaps simplest solution

Consider increasing your heap size!

= Your box may have gigs of available memory, while your app server remains constrained

= You may be suffering outofmemory errors needlessly

Sure, it may be that you'll just “delay the inevitable”, need to raise again and again

= But very often there could be a heap size where your app runs comfortably for days/weeks

Beware also that you may THINK the heap is set to more than it really is
= Recall how FR can SHOW you what the heap maxis, in its Ul

= Make sure it's showing to be (near) the amount you expect

Finally, note that sometimes one REGION of the heap may fill, unexpectedly
= There are JVM args to help tweak that

= But again sometimes the right solution is find the CAUSE for them filling, rather than tweak




Conclusion

Memory problems are not often what they seem
= What may seem a memory “leak” may just be long-lived objects

= Most memory problems are an effect: challenge is to find the root cause

Solving most memory problems is not about JVM tuning or GC algo choices
= Instead the challenge is to find the memory space in trouble
= Then find what's causing that to fill

= Maybe consider raising it

FusionReactor provides several tools, in Ul and logs, to help
= Tracks heap use, and spaces within heap
= And memory spaces outside of heap

= And garbage collection

And next release will include heap profiling tool, adding another vital tool



Other upcoming webinars

= More on analyzing FR logs with Excel - TBA
= Troubleshooting and Identifying Issues using FusionReactor 6 - Part 2 —TBA

= Registration: www.fusion-reactor.com/webinars

= Recordings of past webinars also offered there




Other FR resources

FR web site: fusion-reactor.com
= Downloads

» Docs, videos, technotes, forums, and much more

Email: sales@fusion-reactor.com, support@fusion-reactor.com

Phone: (978) 496-9990 (sales)

Consulting assistance: cfconsultant.com

We welcome your feedback on these or the other webinars, or any you

would like to see



c‘}’%ﬁ"‘éactorm :

:




	Slide 1
	Slide 2: Introductions
	Slide 3: Agenda
	Slide 4: Foreword
	Slide 5: Some common misconceptions about memory
	Slide 6: Key components related to memory for Java servers
	Slide 7: Memory within the JVM (not in-geek-depth)
	Slide 8: What if JVM memory spaces fill?
	Slide 9: How FusionReactor can help prove, disprove, or diagnose a memory problem
	Slide 10: If heap use IS high, what may be the cause?
	Slide 11: What if FR can’t help explain high heap?
	Slide 12: But FusionReactor will help with this in the future
	Slide 13: What about JVM tuning? GC algorithm choices?
	Slide 14: Perhaps simplest solution
	Slide 15: Conclusion
	Slide 16: Other upcoming webinars
	Slide 17: Other FR resources
	Slide 18: Questions & Answers

